Renormalized oscillation theory for Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Oscillation Theory and Renormalized Oscillation Theory for Jacobi Operators
We provide a comprehensive treatment of oscillation theory for Jacobi operators with separated boundary conditions. Our main results are as follows: If u solves the Jacobi equation (Hu)(n) = a(n)u(n + 1) + a(n − 1)u(n − 1) − b(n)u(n) = λu(n), λ ∈ R (in the weak sense) on an arbitrary interval and satisfies the boundary condition on the left or right, then the dimension of the spectral projectio...
متن کاملRenormalized Oscillation Theory for Dirac Operators
Oscillation theory for one-dimensional Dirac operators with separated boundary conditions is investigated. Our main theorem reads: If λ0,1 ∈ R and if u, v solve the Dirac equation Hu = λ0u, Hv = λ1v (in the weak sense) and respectively satisfy the boundary condition on the left/right, then the dimension of the spectral projection P(λ0,λ1)(H) equals the number of zeros of the Wronskian of u and ...
متن کاملOscillation Criteria for Hamiltonian Matrix Difference Systems
We obtain some oscillation criteria for the Hamiltonian difference system (AY{t) = B{t)Y{t+\) + C{t)Z{t), I AZ{t) = -A{t)Y{t + 1) B*{t)Z{t), where A, B, C, Y, Z are dxd matrix functions. As a corollary, we establish the validity of an earlier conjecture for a second-order matrix difference system.
متن کاملSome Oscillation Results for Linear Hamiltonian Systems
The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint matrixHamiltonian systemU′ A t U B t V , V ′ C t U−A∗ t V . By using the standard integral averaging technique and positive functionals, new oscillation and interval oscillation criteria are established for the system. These criteria extend and improve some results that have been required before. ...
متن کاملOscillation of Linear Hamiltonian Systems
We establish new oscillation criteria for linear Hamiltonian systems using monotone functionals on a suitable matrix space. In doing so we develop new criteria for oscillation involving general monotone functionals instead of the usual largest eigenvalue. Our results are new even in the particular case of self-adjoint second order differential systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2017.03.005